The Fermi–Pasta–Ulam problem and its underlying integrable dynamics

نویسندگان

  • G. Benettin
  • H. Christodoulidi
  • A. Ponno
چکیده

This paper is devoted to a numerical study of the familiar α+β FPU model. Precisely, we here discuss, revisit and combine together two main ideas on the subject: (i) In the system, at small specific energy ε = E/N , two well separated time–scales are present: in the former one a kind of metastable state is produced, while in the second much larger one, such an intermediate state evolves and reaches statistical equilibrium. (ii) FPU should be interpreted as a perturbed Toda model, rather than (as is typical) as a linear model perturbed by nonlinear terms. In the view we here present and support, the former time scale is the one in which FPU is essentially integrable, its dynamics being almost indistinguishable from the Toda dynamics: the Toda actions stay constant for FPU too (while the usual linear normal modes do not), the angles fill their almost invariant torus, and nothing else happens. The second time scale is instead the one in which the Toda actions significantly evolve, and statistical equilibrium is possible. We study both FPU–like initial states, in which only a few degrees of freedom are excited, and generic initial states extracted randomly from an (approximated) microcanonical distribution. The study is based on a close comparison between the behavior of FPU and Toda in various situations. The main technical novelty is the study of the correlation functions of the Toda constants of motion in the FPU dynamics; such a study allows us to provide a good definition of the equilibrium time τ , i.e. of the second time scale, for generic initial data. Our investigation shows that τ is stable in the thermodynamic limit, i.e. the limit of large N at fixed ε, and that by reducing ε (ideally, the temperature), τ approximately grows following a power law τ ∼ ε−a, with a = 5/2. ∗E-mail: [email protected] †Present address: University of Patras, Department of Mathematics, GR-26500, Patras, Greece; e-mail: [email protected] ‡E-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The two-stage dynamics in the Fermi-Pasta-Ulam problem: from regular to diffusive behavior.

A numerical and analytical study of the relaxation to equilibrium of both the Fermi-Pasta-Ulam (FPU) α-model and the integrable Toda model, when the fundamental mode is initially excited, is reported. We show that the dynamics of both systems is almost identical on the short term, when the energies of the initially unexcited modes grow in geometric progression with time, through a secular avala...

متن کامل

An integrable approximation for the Fermi-Pasta-Ulam lattice

This contribution presents a review of results obtained from computations of approximate equations of motion for the Fermi-Pasta-Ulam lattice. These approximate equations are obtained as a finite-dimensional Birkhoff normal form. It turns out that in many cases, the Birkhoff normal form is suitable for application of the KAM theorem. In particular this proves Nishida’s 1971 conjecture stating t...

متن کامل

Recurrence phase shift in Fermi–Pasta–Ulam nonlinear dynamics

Article history: Received 22 September 2011 Accepted 4 October 2011 Available online 7 October 2011 Communicated by V.M. Agranovich We show that the dynamics of Fermi–Pasta–Ulam recurrence is associated with a nonlinear phase shift between initial and final states that are otherwise identical, after a full growth-return cycle. The properties of this phase shift are studied for the particular ca...

متن کامل

Numerical analysis of the one-mode solutions in the Fermi-Pasta-Ulam system.

The stability of the one-mode nonlinear solutions of the Fermi-Pasta-Ulam beta system is numerically investigated. No external perturbation is considered for the one-mode exact analytical solutions, the only perturbation being that introduced by computational errors in the numerical integration of motion equations. The threshold energy for the excitation of the other normal modes and the dynami...

متن کامل

THE FERMI-PASTA-ULAM LATTICE Background The Fermi-Pasta-Ulam lattice is named after the experiments

The Fermi-Pasta-Ulam lattice is named after the experiments performed by Enrico Fermi, John Pasta, and Stanislaw Ulam in 1954-5 on the Los Alamos MANIAC computer, one of the first electronic computers. As reported in Ulam’s autobiography [Uh], Fermi immediately suggested using the new machine for theoretical work, and it was decided to start by studying the vibrations of a string under the infl...

متن کامل

A Symmetric Normal Form for the Fermi Pasta Ulam Chain

The Fermi Pasta Ulam chain with periodic boundary conditions admits discrete and continuous symmetries. These symmetries allow one to formulate important restrictions on the Birkhoff normal form of this Hamiltonian system. We derive integrability properties and KAM statements. Hence the combination of symmetry and resonance in the periodic Fermi Pasta Ulam chain explains its quasiperiodic behav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013